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Abstract

The predictions of quantum computing potential puts the world’s classical cryptography at

risk of exploitation. Cryptographic protocols are used extensively on the World Wide Web.

The Rivest–Shamir–Adleman (RSA) protocol is just one public-key cryptosystem at risk, as

it derives its security from the computational hardness of factoring a large integer into two

primes - a feat now possible in a fraction of the time over classical means using Shor’s quantum

factoring algorithm. Post-quantum cryptography provides a short-term/cost effective plan to

counter quantum attacks, with the goal being to develop cryptographic schemes secure against

both quantum and classical computers. Society needs to be pre-emptive, as all the while

existing cryptographic protocols are at risk of quantum attacks.

Quantum cryptography is a long-term/more costly option, providing new cryptographic schemes

which exploit the principles of quantum mechanics to enable provably secure distribution of pri-

vate information. This paper will discuss the current quantum cryptographic techniques both

available and in development, such as: quantum key distribution (QKD), quantum networks,

delegated quantum computing techniques (BQC and QHE) and quantum random number gen-

erators (QRNGS), along with a new classical scheme heralded as a classical QKD-like protocol.

This paper is aimed at computer scientists and people in industry who concern themselves with

the post-quantum era of security and cryptography.
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Chapter 1

Introduction

Quantum computers are still in the early stages of development however research institutes and

major corporations are investing heavily in their future. In October 2019 Google claimed to

have made a breakthrough in the field by achieving “quantum supremacy” when, “its processing

chip took 200 seconds to perform a calculation that would have taken a classical supercomputer

10,000 years to complete” (Boland and Zolfagharifard, 2019).

The reason for such wide-spread interest in quantum computers is the potential disruption

which they pose to existing classical systems. In particular the implications on cyber security

and cryptography used by websites, web browsers and other software applications in our day-

to-day life. Quantum computers potentially threaten a global catastrophe of digital privacy

infringement and subsequent insurrection were this technology to be used by malicious actors

(Majot and Yampolskiy, 2015).

This paper is intended to introduce people in the field of computer science and business

personal to the pitfalls of classical cryptography and the potential of future-proof cryptographic

techniques in response to quantum computers. It is important to consider the options for

the future with regards to our digital security: post-quantum cryptography and quantum

cryptography. How the best path forward might be to look into quantum cryptography as a

means of authentication and secure communications for our future. The paper will discuss the

different types of quantum cryptography, delve into how they work, and help pin-point their

potential applications.

The development of quantum computers cannot be stopped, nor should it be, but if we wait

until prototypes become fully fault-tolerant and general purpose machines, it will be too late.

Only through informing people can we bring about pre-emptive change in cyber security and

cryptographic methods to keep communications safe in the future age of quantum computers.

Chapter 2 introduces various background materials relevant to understanding the potential

importance of quantum cryptography. Chapter 4 is an introduction to quantum key distribution

(QKD) and other general concepts within quantum cryptography. Chapter 5 covers the topic
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of quantum networks for widespread use of quantum cryptographic methods. Chapter 6 talks

about delegated quantum computing, for people who wish to harness quantum computation

without owning a quantum computer. Chapter 7 covers quantum random number generator

and its usefulness, especially within QKD. Chapter 8 presents some newly theorised classical

cryptography with the potential to match existing quantum cryptography.
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Chapter 2

Background

2.1 Quantum Computing, Qubits and Quantum Infor-

mation Processing

Quantum computing is a new and ever growing paradigm in the history of computation. In the

1980s, Richard Feynman discovered that "certain quantum mechanical effects cannot be simu-

lated efficiently on a classical computer" (Rieffel and Polak, 2000), leading to speculation over

the efficiency of classical computing and whether computation could be done more efficiently

by making use of quantum effects. Quantum computers make use of quantum information

processing which involve, "doing information processing using quantum mechanical systems"

by, "using quantum mechanics to perform computations, instead of classical physics" (Nielsen

and Chuang, 2011; Ornes, 2017).

Rieffel and Polak (2000) suggest that quantum computing offers, "an exponential speed-

up" over classical computers in certain cases. However, researchers are certain that, "no

conceivable amount of progress in classical computation would be able to overcome the gap

between the power of a classical computer and the power of a quantum computer" (Nielsen

and Chuang, 2011). Quantum computers also promise to, "efficiently simulate systems that

have no known efficient simulation on a classical computer" (Nielsen and Chuang, 2011).

Cusumano (2018) describes quantum computing having uses for mathematical problems that

require massive parallel computations such as: optimisation, cryptography and secure commu-

nications, pattern matching and big-data analysis, artificial intelligence and machine learning.

The main problem is, "quantum computing hardware will likely be more expensive to build

than classical hardware" (Moody et al., 2016).

A classical computer works differently to a quantum computer; where a classical computer

uses classical bits (in the state 0 or 1), a quantum bit (or qubit, see figure 2.1) can be, "in

a superposition state that encodes both 0 and 1" (Rieffel and Polak, 2000; Ornes, 2017). A

qubit represents the combination of probabilities for all classical states, wherein measuring a
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Figure 2.1: Classical Bit vs. Qubit (Monroe, 2018)

qubit randomly yields only one of the values in the superposition (in this case just one classical

bit of information, either 0 and 1), while simultaneously destroying all of the other results

of the computation (Rieffel and Polak, 2000). If a single qubit can be in a superposition of

states 0 and 1, a register of n qubits can be in a superposition of all (2n) possible input values

(Rieffel and Polak, 2000).

A quantum state denotes a group of qubits, and a quantum algorithm performs transformations

over quantum states; this transformation changes the probabilities characterising the state

of superposition of the qubits (Nielsen and Chuang, 2011). In the time it takes a classical

computer to compute the output for a single input state, a quantum computer can compute the

values for all input states - known as quantum parallelism. The power of quantum computation

derives from, "the exponential state spaces of multiple quantum bits" (Rieffel and Polak, 2000).

It is also important to bare in mind that all quantum state transformations have to be reversible.

The classical ’NOT’ gate is reversible, though: ’AND’, ’OR’ and ’NAND’ classical gates are

not (Rieffel and Polak, 2000). By using various quantum logic gates: controlled-NOT (CNOT)

gate and Hadamard gate (Nielsen and Chuang, 2011) in different combinations and orderings,

it is possible to carry out all classical computations on quantum mechanical systems.

The power of quantum algorithms derives from taking advantage of quantum parallelism and

quantum entanglement where, "desired results will be measured with high probability" (Rieffel

and Polak, 2000). Quantum entanglement is defined by Aumasson (2017) as, "two particles

can be entangled in such a way that observing the value of either of the two gives you the value
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of the other particle" and holds true even if the two entangled particles (qubits) are separated

by thousands of kilometres Aumasson (2017). Two entangled particles (qubits) are said to be

in a Bell state (named after John Bell) and can also be referred to as an Einstein-Podolsky-

Rosen (EPR) pair - a concept first discussed in a paper by the three authors concerning, "the

strange properties of states like the Bell state" (Nielsen and Chuang, 2011).

The biggest limitation for building a quantum computer is decoherence, "the distortion of

the quantum state due to interaction with the environment" (Rieffel and Polak, 2000). This

characteristic of physics had researchers believing for a while that quantum computers could

not be built, that it would be impossible to isolate quantum states sufficiently from the

external environment. The solution to this was in the breakthrough of quantum error correction

techniques for multiple qubits (Rieffel and Polak, 2000).

Along side research into the creation of quantum computers, researchers continue to develop

theoretical quantum algorithms to evident the practical use of quantum mechanical systems.

In 1994, Peter Shor unveiled an algorithm, later known as Shor’s algorithm, to tackle two

enormously important problems: the factoring of a large integer in order to find the two

original prime factors and the discrete logarithm problem (DLP) (Nielsen and Chuang, 2011).

Shor’s algorithm brings an exponential speed-up for solving not only factoring of a large integer

and the DLP, but also elliptic-curve DLP (ECDLP) problems that are widely used in current

cryptographic methods (Aumasson, 2017). This sparked widespread interest as these problems

were widely believed to be impossible by classical means, leading experts to believe, "the only

way to thwart quantum computers is to fight fire with fire, using cryptography that itself relies

on quantum mechanics" (Ornes, 2017).

2.2 Cryptography and Cryptosystems

The main chapters of this survey paper discuss quantum cryptography, so it’s important to first

understand the basics of (classical) cryptography. Cryptography is used to ensure communi-

cations between specific parties are kept private by preventing eavesdropping. Cryptography is

therefore framed by Nielsen and Chuang (2011) as, "communication or computation involving

two or more parties who may not trust one another". The best known cryptographic problem

is the transmission of secret messages, such as the communication of payment information to

a merchant over the World Wide Web, to prevent a third party intercepting the transaction

(Nielsen and Chuang, 2011). This is done using a cryptographic protocol and these can be

utilised in two types of cryptosystems: private and public.
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Nielsen and Chuang (2011) describe how private-key cryptosystems work by having two parties

share a private key, which only they know. Both parties use this key to encrypt communica-

tions they wish to send to the other party, then the same private key is used by the recipient

for decryption. This is an example of symmetric encryption. Unfortunately, private-key cryp-

tosystems suffer from the basic problem of how to distribute the keys without malicious actors

stealing the key and intercepting messages. Public-key cryptosystems solve this by making it

unnecessary for two parties to share a private key before communicating.

By contrast public-key cryptosystems work by having each party publish a public key, which is

available to the general public. Public-key cryptosystems are most commonly used today for

digital signatures and key establishment (Moody et al., 2016), with its security provided by

"unproven mathematical assumptions about the difficulty of solving certain problems" (Nielsen

and Chuang, 2011). Public-key encryption is an example of asymmetric encryption, it works

by having the sender of a message encrypt that message with the recipients public key, so

only the correct recipient can decrypt the message using their unique (and secret) private key

(Nielsen and Chuang, 2011). Public-key signing (digital signatures), is similar to public-key

encryption, wherein a sent message is encrypted by the sender’s private key, so any recipient of

the message will be able to decrypt the message using the sender’s public key (Rivest, Shamir

and Adleman, 1983) - this is useful to ensure a message came from a genuine sender.

Aumasson (2017) warns, "quantum computing has been heralded by some as the death of

cryptography as we know it". The security of cryptographic protocols, like the widely used

Rivest–Shamir–Adleman (RSA) algorithm, rely on the computational hardness of factoring a

large integer into its original two prime integers. Shor’s algorithm has proven to be effective at

factorisation, and so a quantum computer which can implement Shor’s algorithms would make

RSA obsolete (Rieffel and Polak, 2000; Ornes, 2017). Subsequently, nearly all the public-key

cryptography mechanisms currently deployed on the Internet would be broken. The only saving

grace is that, in reference to quantum computers, "such machines are still in the early stages

of development" and thus, "we should be prepared and understand the real impact of quantum

computing on our networks’ security" (Aumasson, 2017). There two cryptographic options to

consider for our future security: post-quantum cryptography and quantum cryptography.

2.3 Post-Quantum Cryptography

A short-term and relatively cost effective backup plan to prevent a global catastrophe is post-

quantum cryptography, also known as quantum-resistant cryptography (Aumasson, 2017).

Moody et al. (2016) describe the goal of post-quantum cryptography as developing, "cryp-

tographic systems that are secure against both quantum and classical computers, and can
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inter-operate with existing communications protocols and networks". It’s based on crypto-

graphic protocols that run on classical computers with no known risk from quantum attacks.

Post-quantum cryptography protocols represent a proactive response to predicted future threats,

since Moody et al. (2016) caution that, "regardless of whether we can estimate the exact time

of the arrival of the quantum computing era, we must begin now to prepare our information

security systems to be able to resist quantum computing". This transition to post-quantum

cryptography standards brings with it fresh challenges for implementing new cryptographic

infrastructures. Therefore it is important for agencies and businesses to focus on "crypto

agility" strategies while there is still time (Moody et al., 2016). Public-key cryptosystems

are particularly vulnerable, with the construction of large-scale quantum computers rendering

them “insecure”. By contrast, the impact on symmetric key systems does not seem to "as

drastic" (Moody et al., 2016).

Rieffel and Polak (2000) introduce an algorithm developed by Lov Grover, known as Grover’s al-

gorithm, intended for unstructured searches in a quantum system. Grover’s algorithm provides

a quadratic speed-up over classical equivalents for unstructured searches, with an exponential

speed-up for search algorithms considered impossible, suggesting that both symmetric algo-

rithms and hash functions should be usable in the era of quantum computing (Moody et al.,

2016). This turns the spotlight onto public-key algorithms and which of those currently in use

are quantum resistant and, more importantly, those which are not.

Moody et al. (2016) talk about several categories for which post-quantum primitives have

been suggested including: lattice-based cryptography, code-based cryptography, multivariate

polynomial cryptography, hash-based signatures and others which don’t fall into the above cat-

egories, such as, "evaluating isogenies on supersingular elliptic curves". The National Institute

of Standards and Technology (NIST) has started to accept proposals for quantum-resistant

public-key encryption, digital signature and key exchange algorithms (Moody et al., 2016).

In 2017 they began holding open competitions to encourage the development and ultimately

standardisation of post-quantum cryptographic schemes that could be proven unbreakable by

quantum computation (Aumasson, 2017). This standardisation drive by NIST has been suc-

cessful in the past, leading to protocols such as Advanced Encryption Standard (AES), which

was developed as a result of co-operation between academia and industry. The effectiveness of

the standard has subsequently seen it widely adopted. NIST’s standardisation drive into post-

quantum cryptography will, "likely provide similar benefits" (Moody et al., 2016), although

the agency’s current stance is that more research and analysis is needed before proposed

post-quantum algorithms can be recommended for widespread deployment.

Post-quantum cryptography is essential for our foreseeable future as part of an overall strategy
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to, "meet demands for cryptographic usability and flexibility without sacrificing confidence"

(Bernstein and Lange, 2017). Aumasson (2017) cautions that it’s not clear whether the perfor-

mance of post-quantum cryptography will be on par with that of quantum-unsafe algorithms in

current use. This suggests that there might have to be a trade-off between speed and security.

Indeed there are still many conundrums surrounding the future application of post-quantum

cryptography.

Moody et al. (2016) suggest that, "most public-key cryptosystems come with a security proof,

these proofs are based on unproven assumptions" and thus, "lack of known attacks is used

to justify the security of public-key cryptography currently in use". Until systems are tested

in earnest by sophisticated quantum attacks in the future there can be no definitive answers.

While at this stage, it has to be acknowledged that "current quantum cryptanalysis remains

rather limited" (Moody et al., 2016) meaning post-quantum cryptography is so far not known

to be insecure.

2.4 Global Catastrophe and Cyber Security Concerns

The impact on society from general-purpose fault-tolerant quantum computers becoming a

reality is such that Majot and Yampolskiy (2015) believe, "governments and other organisations

would be able to eavesdrop on private citizens with relative ease.” They predict that this could

result in, "a slew of rights violations leading to catastrophe" (Majot and Yampolskiy, 2015).

With the potential to compromise digital certificates by harnessing quantum computation,

malicious actors could masquerade as trusted entities. This could threaten the security of

digital transactions such as: stock exchanges, personal banking, and software update veri-

fication (Majot and Yampolskiy, 2015). Keplinger (2018) believes that, "quantum resistant

crypto-currency" would be a necessity for the future, as even block-chain methods could be

subject to disruption by quantum computing.

Majot and Yampolskiy (2015) state the necessity for development and maturation of post-

quantum cryptographic algorithms, along with new and updated regulations set out by gov-

ernments and other global institutes. Such new regulations would be required to, "promote

the containment and responsible use of quantum computers in order to help alleviate some of

the security issues posed by outdated cryptographic systems in a post-quantum environment"

(Majot and Yampolskiy, 2015).

The current development of quantum computing is, arguably, reminiscent of conventional

computing circa the late 1940s and early 1950s (Cusumano, 2018). However, Moody et al.

(2016) stated that researchers working on the building of quantum computers estimated, "a
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quantum computer capable of breaking 2000-bit RSA in a matter of hours could be built by

2030 for a budget of about a billion dollars". Knowing the risks with current cryptographic

protocols, the National Security Agency (NSA) has been transferring to quantum-resistant

cryptography since 2015, in preparation for the post-quantum era (Keplinger, 2018).

For all the above reasons, it’s vital that post-quantum cryptography avenues continue to be

explored. Moody et al. (2016) advise that when standards for quantum-resistant public-key

cryptography do become standardised, "NIST will reassess the imminence of the threat of

quantum computers to existing standards, and may decide to deprecate or withdraw the af-

fected standards thereafter as a result". It is also important that agencies and businesses be

prepared to transition away from any deprecated algorithms in favour of new post-quantum

cryptography alternatives as early as 10 years from now (Moody et al., 2016). Just as quantum

computation is predicted to be more efficient than classical computation, quantum cryptogra-

phy could provide a better means of security than standalone post-quantum cryptography.
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Chapter 3

Aims

This paper sets out to survey the field of quantum cryptography. Initially providing a back-

ground concerning why quantum cryptography could be important and the main body sum-

marising all the different topics within quantum cryptography. The target audience being

fellow computer scientists and people in industry who concern themselves with the new era of

security and cryptography with regards to the emergence of quantum computing.
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Chapter 4

Quantum Cryptography & Quantum Key

Distribution (QKD)

4.1 Quantum Cryptography

A long-term and more costly option to help prevent potentially catastrophic breaches of data

security in the future is quantum cryptography. Although quantum computing poses a threat

to existing public key cryptosystems, it makes sense that new cryptographic schemes should

also be developed by exploiting, "the principles of quantum mechanics to enable provably

secure distribution of private information" (Nielsen and Chuang, 2011). This leads to the

discussion of how quantum mechanics can be used to do key distribution in such a way that

security between two parties cannot be compromised, a procedure known as quantum key

distribution (QKD).

4.2 What is QKD?

QKD is a quantum-based, provably secure technique by which, "private key bits can be created

between two parties over a public channel" (Nielsen and Chuang, 2011). By using properties

of quantum mechanics to create a secure communication channel, also known as a quantum

channel (Moody et al., 2016; Nielsen and Chuang, 2011), quantum state information/qubits

can be shared as part of the key distribution procedure (see figure 4.1) providing, "security

and confidentiality by resorting to unbreakable principles of nature" (Pirandola et al., 2019).

A requirement for the QKD is that qubits need to be communicated over the quantum channel

with an error rate lower than a pre-determined threshold (Nielsen and Chuang, 2011).

The result of QKD being a string of (classical) bits, acting as a private key to be used in a

private-key cryptosystem. Recall that with private-key cryptosystems, the difficulty was sharing

of a private key between two parties. The security of the resulting private key is, "guaranteed

by the properties of quantum information, and thus is conditioned only on fundamental laws

of physics being correct" (Nielsen and Chuang, 2011).
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Figure 4.1: Two parties, communicating over a simple quantum network (see chapter 5), which uses a QKD system for key
establishment

With QKD, an eavesdropper cannot gain any information through measuring the qubits trans-

mitted between two parties, as this would disturb the state of those qubits - recall how quantum

information is inherently susceptible to the act of measurement (see section 2.1). It is there-

fore possible for two parties conducting QKD to detect whether measurements have been

made to a qubit. This property is called "contextuality" (Singh, Bharti and Arvind, 2017)

and forms the basis for all QKD, through methods such as conjugate coding (see section 4.3)

which make it harder for eavesdroppers to go undetected. Also due to the no-cloning theorem

mentioned by Nielsen and Chuang (2011), it is impossible for an eavesdropper to make a copy

of a transmitted quantum state (qubit). QKD works very simply in the following way:

1. Alice sends individual particles (e.g. light photons representing qubits) to Bob over a

quantum channel.

2. Bob measures the state of the qubits he receives, with each measurement of each qubit

resulting in a classical bit (either 0 or 1).

3. Bob and Alice communicate to each other over a classical channel the result of each qubit

measurement, and compare each others results.

4. Both Alice and Bob will keep matching bits and use these as a shared (private) key, dis-

carding all non-matching bits.

4.3 Conjugate Coding

Wiesner (1983) introduced the concept of conjugate coding in 1983, also known as quantum

coding or quantum multiplexing, based on the principle that one can, "encode classical infor-
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mation into conjugate quantum bases" (Broadbent and Schaffner, 2015). The vast majority

of quantum cryptographic protocols exploit conjugate coding in one way or another.

Figure 4.2: Example of Conjugate Coding (Broadbent and Schaffner, 2015)

Broadbent and Schaffner (2015) and Padamvathi, Vardhan and Krishna (2016) state how

conjugate coding involves representing a qubit as a light photon, with photon polarisation as a

quantum degree of freedom, where photons can be polarised in one of four ways: horizontally

(H), vertically (V ), diagonally to the left (DL), or diagonally to the right (DR).

Each photon polarisation acts as a quantum property by associating: H = |0〉, V = |1〉,
DL = 1√

2
(|0〉+ |1〉) and DR = 1√

2
(|0〉− |1〉), such that we can apply quantum operations to

these states. Using these states, we can define two sets: R = H,V and D = DL,DR, the

former called the rectilinear basis (R) and the latter called the diagonal basis (D), where R

and D are known as "conjugate bases" (Broadbent and Schaffner, 2015; Padamvathi, Vardhan

and Krishna, 2016).

Each state within each basis can be associated with a classical bit value (see figure 4.2).

The non-orthogonality condition of conjugate bases, "guarantees that an eavesdropper cannot

clone or measure the prepared states with perfect fidelity" (Pirandola et al., 2019). Also, with

the no-cloning theorem assuring that eavesdroppers cannot replicate a particle of unknown

state, any attempt at information retrieval by an eavesdropper, "causes a disturbance on the

quantum states that can be detected by the legitimate users" (Pirandola et al., 2019).

4.4 QKD Protocols

There are many QKD protocols in existence today, each take the basic principles of QKD and

extend upon it to improve upon security by making it harder for eavesdroppers. Pirandola et al.

(2019) summarise the process of generic “prepare and measure” QKD protocols as having two

main steps: quantum communication, followed by classical post-processing, which is exactly

what most QKD protocols aim to accomplish. Some of the most famous and earliest QKD

protocols to be created are the following: BB84, E91 and B92.
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4.4.1 BB84 Protocol

BB84 is heralded as the first quantum cryptography (and QKD) protocol, created in 1984 by

Charles Bennett and Gilles Brassard (Bennett and Brassard, 1984, 2014). BB84 and many

other QKD protocols utilise a concept called conjugate coding (see section 4.3). BB84 in

particular was the first QKD protocol to show, "how conjugate coding could be used for an

information-theoretically secure key agreement protocol" (Broadbent and Schaffner, 2015), to

ensure greater security during the QKD process.

Bennett and Brassard (1984, 2014) and Pirandola et al. (2019) describe how the BB84 pro-

tocol works step-by-step, where hypothetical subjects Alice and Bob are trying to securely

communicate, and Eve is a potential eavesdropper:

1. Alice sends qubits (or states, each state represented as a light photon) over a quantum

channel to Bob, with each qubit encoded in one of two bases (see section 4.3).

2. Bob measures the qubits he received. For each measurement he randomly chooses one of

two bases (see section 4.3) to measure each qubit.

3. Alice and Bob both publicly disclose a subset of the data over an (authenticated) clas-

sical channel, with Alice announcing which states she sent and Bob announcing which

measurement results he obtained.

4. Alice and Bob can now both determine which bits have been transmitted correctly, by

identifying those bits for which the sending and receiving bases agree.

5. If any third party had intercepted and measured the qubits, it would change Bob’s mea-

surement outcomes and the intrusion would be detected by Alice and Bob.

6. If an intruder is detected, QKD aborts, and repeats at a later stage. If no intruder is

detected, the process continues with use privacy amplification and information reconciliation

techniques (see section 4.5).

7. After classical post-processing techniques have been applied, Alice and Bob will each have

a shared string of bits, known only to them, which can act as private key.

Suppose a malicious actor Eve was to attempt to intercept and measure the state of the

qubits initially transmitted by Alice over the quantum channel, then resend new qubits with

the measured state. Recall how when a qubit is measured it falls out of superposition yielding

a classical bit (either 0 or 1, see section 2.1). If Eve was to try the above she will potentially

use the wrong basis for her measurements approximately 50% of the time, and potentially
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resend a qubit with the wrong basis (Nielsen and Chuang, 2011).

If Bob were to measure a resent qubit with the correct basis there will be a 25% probability

that he measures the wrong value. Thus any eavesdropping on the quantum channel is

bound to introduce a higher error rate, making it apparent to Alice and Bob that someone is

eavesdropping, which can be checked by, "communicating a sufficient number of parity bits

of their keys" (Nielsen and Chuang, 2011) over the (authenticated) classical channel. It’s also

likely that Eve’s version of the key would be 25% incorrect anyway.

The BB84 protocol has also been extended in subsequent years from using four states (four

qubits sent, two bases used) to use six states with three bases used (Pirandola et al., 2019).

This makes it harder for eavesdroppers to guess the correct basis used for measurement, and

will result in the eavesdropper producing an even higher rate of error.

4.4.2 E91 & BBM92 Protocol(s)

In 1991, Artur Ekert developed a new approach to QKD, which for the first time exploits

entanglement for cryptographic purposes, later called “BBM92” or “EPR scheme” (Pirandola

et al., 2019). Consider a pair of entangled particles (an EPR pair in a Bell state), which are

then separated and sent to Alice and Bob, each getting one half of each pair. The received

particles are measured by Alice and Bob by one of three possible bases. Any intervention

from eavesdroppers would subsequently induce, "elements of physical reality which affects the

non-locality of quantum mechanics" (Pirandola et al., 2019). The security of the protocol is

guaranteed by a Bell-like test to rule out eavesdroppers by relying on the non-local feature of

entangled states in quantum physics.

4.4.3 B92 Protocol

In 1992, Charles Bennett showed that it was possible for QKD to be performed using only two

(non-orthogonal) states - the bare minimum required to transmit one bit of a cryptographic

key in any QKD protocol (Pirandola et al., 2019). The process starts with Alice preparing a

qubit in one of two quantum states, with each possible state associated with a classical bit

value (the first quantum state as 0, and the second as 1). The state is sent to Bob, who

measures it in a suitable basis, to retrieve Alice’s bit. If the states were orthogonal, it is

always possible for Bob to deterministically recover the bit (Pirandola et al., 2019). Due to

its properties of demonstrating the minimum requirements for QKD, the performance of the

B92 protocol is not as good as that of the BB84 protocol.
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4.5 Privacy Amplification & Information Reconcilia-

tion

In terms of the Alice and Bob example above, if no intrusion is detected, two classical pre-

processing techniques can be applied to, "systematically increase the correlation between their

key strings, while reducing eavesdropper Eve’s mutual information about the result, to any

desired level of security" (Nielsen and Chuang, 2011). These are privacy amplification and

information reconciliation.

Information reconciliation provides a means of doing error-correction conducted over a (clas-

sical) public channel, reconciling errors between both parties bit strings (X and Y ) to obtain

a shared bit string (W ), while divulging as little information as possible to Eve (Nielsen and

Chuang, 2011).

Privacy amplification involves a string of bits, which is partially known by an adversary, and

producing a smaller string of bits out of the original string, for which no external attacker can

have any, "statistically significant information" (Herrero-Collantes and Garcia-Escartin, 2017)

concerning the new string. Supposing Eve has obtained a random string (Z) which is partially

correlated with Alice and Bob’s shared key (W ), privacy amplification can be used to, "reduce

Eve’s stolen information to a negligible amount" (Pirandola et al., 2019).

Specifically, Alice and Bob extract from the current shared key (W ) a smaller set of bits (S)

whose correlation with Eve’s obtained information (Z) is below a desired threshold (Nielsen

and Chuang, 2011). This smaller set of bits (S) known only to Alice and Bob will have high

entropy, and thus make a good private key.

4.6 QKD vs. Public Key Cryptosystems

It’s important to reiterate how, "none of the QKD techniques are substitutes for public key

encryption schemes" (Nielsen and Chuang, 2011). It stands to reason that public-key (asym-

metric) cryptographic schemes will still be favoured going forward as QKD, by itself, cannot

compete in aspects such as authentication (Ioannou and Mosca, 2014). This is the main

limitation of QKD, in that it can only create a private channel between two parties that can

authenticate to each other. Without a separate means of authentication, QKD is susceptible

to man-in-the-middle attacks. Since QKD requires an authenticated classic channel to conduct

authentication (Zawadzki, 2018), the only means of currently authenticating users over the

Internet is by using existing (classical) public-key cryptographic schemes.
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4.7 Device-independent Quantum Cryptography

Quantum cryptographic protocols can be said to be device-independent if, "protocols can be

run on untrusted devices which have possibly been constructed by the adversary" (Broadbent

and Schaffner, 2015), and thus implementations of such protocols need to have measures in

place to counter these malicious devices such that the process of the quantum cryptographic

protocol (e.g. QKD) is unimpeded.

4.7.1 Measurement-Device-Independent QKD

Measurement-device-independence holds the same definition as ’device-independent’, as seen

in section 4.7, only it refers specifically to the act of conducting measurements of quantum

states. Lo, Curty and Qi (2012) conceived the notion of measurement-device-independent

QKD (MDI-QKD), showing that two parties can successfully and efficiently engage in a QKD

process using an untrusted relay, as long as Alice and Bob trust the equipment in their own

possession. This means that quantum repeaters or relays (used in making up a quantum

network, see chapter 5) need not compromise the security of a QKD protocol.

4.8 Position-based Quantum Cryptography

Position-based quantum cryptography is where entities involved in a quantum cryptographic

process can use, "geographical position as cryptographic credential" (Broadbent and Schaffner,

2015). This works by exploiting the, "relativistic no-signalling principle" that messages cannot

travel faster than the speed of light; this can be used to conduction timely verification (by a

’verifier’) concerning whether one is within a certain distance (Broadbent and Schaffner, 2015).

Even though currently it seems inapplicable for quantum protocols, for the task of position ver-

ification, the possibility of, "position-based quantum cryptography against resource-bounded

adversaries remains a tantalising open question" (Broadbent and Schaffner, 2015).

4.9 Quantum Coin Flipping

Bennett and Brassard (1984, 2014) describe quantum coin flipping as a solution to the problem

of, "two distrustful parties communicating at a distance without the help of a third party",

such that they can agree on a winner and a loser between themselves, with each party having

exactly 50% chance of winning. Also, if either party were to bias the outcome, this would be

detected by the other party as cheating.

The process is similar to QKD, though the process of quantum coin-flipping is as follows
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(Bennett and Brassard, 1984, 2014):

1. Alice randomly chooses one basis and encodes a random a string of bits with that basis

before sending the resulting sequence of qubits to Bob.

2. Bob reads each qubits with a random basis, and records the results in two tables, one table

for rectilinear received qubits and one of diagonally received qubits.

3. Bob makes his guess as to which basis Alice used, and announces it to Alice. Guessing

correctly means he wins, other he loses.

4. Alice reports to Bob whether he won, certifying this information by sending Bob (over a

classical channel) her entire original string of bits.

5. Bob can now verify that no cheating has occurred, by comparing Alice’s sequence with

both of his tables (from step 2), as there should be perfect agreement with the table

corresponding to Alice’s reported basis and no correlation with the other table.

4.10 Quantum Money

Quantum money, was a concept thought up in the 1960s by Wiesner (1983) and uses conjugate

coding (see section 4.3) techniques in the construction of "physically unforgeable" (Broadbent

and Schaffner, 2015) money, which relies on the properties of quantum mechanics and the

no-cloning theorem to prevent counterfeiting. The proposal by Wiesner (1983) consists of

quantum banknotes created by encoding quantum particles using conjugate coding, with both

the classical information and basis choice being chosen as random bit strings. A quantum

banknote consists of a sequence of single qubits, chosen randomly from two bases (see section

4.3), with each quantum banknote also having an originator (typically called “the bank”) that

can verify that a quantum banknote is genuine.
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Chapter 5

Quantum Networks

Quantum networks concern the creation of infrastructure for quantum cryptographic tech-

niques (such as QKD) over large distances, through both physical and wireless technologies,

boasting "impregnable security" (Ornes, 2017). QKD in particular requires the ability to reli-

ably transmit, receive, and measure single qubits (generally encoded as single light photons),

with new challenges arising when trying to implement a QKD network on a global scale.

A quantum network for QKD (known as a nodal QKD network) would be made up of quantum

transmitters (Alice’s) and quantum receivers (Bob’s), inter-connected with (trusted) quantum

repeaters or relays, via point-to-point links (Fröhlich et al., 2013). Pirandola et al. (2019)

define quantum repeaters or relays as, "any type of middle node between Alice and Bob which

helps their quantum communication by breaking down their original quantum channel into

sub-channels".

Fröhlich et al. (2013) mention how point-to-point links in a quantum network could be realised

using long-distance ’lit’ optical fibres (in contrast to ’dark’ optical fibre, ’lit’ optical fibre is

simultaneously being used for other applications), and in the future, potentially ground-to-

satellite communication. Ornes (2017) mentions how some experts are interested in building,

"a global quantum Internet in which computers would communicate securely using the quan-

tum mechanical properties of particles of light", harnessing networks both on the ground using

existing fibre-optic cables and in space using satellites capable of exchanging light photons.

Fröhlich et al. (2013) mention how several field tests of QKD have proven it to be a, "reliable

technology for cryptographic key exchange" though currently we are unable to extend the

scope of QKD beyond, "niche applications in dedicated high security networks". Even though

both fibre and satellite technologies would be great for the longer distance point-to-point links,

they would be less suitable in providing a multitude of individual users access (e.g. the last-mile

service) to this QKD infrastructure (Fröhlich et al., 2013). Also, though ’lit’ optical fibre is

in principle able to perform QKD over commercial fibre-optical networks, elements of existing

networks may be incompatible with QKD at present. Background noise from commercial

implementations would also be worse than in dedicated fibre.
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Garcia-Escartin and Chamorro-Posada (2007) mention how future quantum networks, intended

primarily for communication, will involve multiple users sharing limited resources. Whereby

in order to allow for multiple simultaneous communications, multiplexing techniques will also

need to be considered.

It has been shown that quantum networks using primarily satellite communication may be

much more efficient due to the vacuum of space (Yin et al., 2017). QKD over ’lit’ optical fibre

has been shown to reach around 100 km (greater than 300 km on dedicated fibre), though a

satellite link can reach as far as 1200 km.

Quantum networks still have a long way to go, with the need to develop and implement more

robust (QKD) protocols able to achieve long distances while upholding a reasonably high data

rate. These would also need to support concepts such as MDI-QKD (see section 4.7), wherein

middle nodes (quantum repeaters or relays) may generally be unreliable and untrusted.

5.1 Network-centric Quantum Communications (NQC)

Hughes et al. (2013) mention how trusted QKD networks using point-to-point links: lack

scalability, perform optimally on dedicated optical fibre, are expensive and lack incentive for

mass production, and only provide one of the cryptographic functions (QKD) needed for secure

communications, such that they have received limited practical interest.

As quantum networks could see implementation on optical fibre, and so topics such as network-

centric quantum communications (NQC) for, "light weight encryption, authentication and

digital signatures" (Hughes et al., 2013) over fibre-optics are vital. NQC offers, "a scalable

form of quantum cryptography providing key management with forward secrecy" (Hughes

et al., 2013).
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Chapter 6

Delegated Quantum Computation

Since quantum computers are very expensive, and thus not everyone will be able to afford one,

it is likely for standalone users in the future (without physical access to a quantum computer) to

harness the power of quantum computation through cloud-based quantum computing services,

in which a client’s computation is delegated to a remote quantum computing server. Delegated

(classical) computation is currently widespread, in the form of cloud computing (Fitzsimons,

2017), with security of cloud computing (in particular for cloud quantum computer) potentially

becoming a serious issue in the future (Pirandola et al., 2019). There are two prevalent

types of delegated quantum computation: blind quantum computation (BQC) and quantum

homomorphic encryption (QHE).

6.1 Blind Quantum Computation (BQC)

BQC addresses the task of a client with limited quantum capabilities interacting with a remote

quantum computer to, "perform an arbitrary quantum computation, while keeping the descrip-

tion of that computation hidden from the remote quantum computer" (Mantri, Perez-Delgado

and Fitzsimons, 2013), wherein a client sends a quantum state to the quantum server, with

such state encoding both the chosen algorithm and the input (Pirandola et al., 2019).

BQC expects a client to at least be able to create, measure, send and/or receive very simple

single qubit states. BQC allows a client to execute a quantum algorithm by using one or more

remote quantum computers, while allowing the client to verify that the server is correctly per-

forming the delegated computation and at the same time keep the results of the computation

hidden (Pirandola et al., 2019). Fitzsimons (2017) explains how a client is able to verify the

the correctness of the computation performed by the remote quantum server by embedding

hidden tests within the computation. During BQC, it is key that the server does not learn

the input, output, or even track the computation performed on behalf of the client, and thus

by ensuring anonymity from the server, it allows one to counteract the threat posed by a

compromised or malicious server (Fitzsimons, 2017).

Broadbent, Fitzsimons and Kashefi (2009) describe a fault-tolerant universal BQC (UBQC)
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protocol, known as the BFK protocol, which can detect cheating by the quantum server and

does not require any quantum computation by the client. The only requirement of the client

is that they can prepare single qubits randomly chosen from a finite set and send them to the

quantum server (Broadbent, Fitzsimons and Kashefi, 2009). The protocol works in two steps:

preparation and computation.

• Preparation: Alice (client) prepares single qubits chosen randomly and sends them to Bob

(server), wherein Bob entangles these received qubits in accordance with a, "brickwork state"

(Broadbent, Fitzsimons and Kashefi, 2009), which results in Bob unavoidably learning the

maximum length of input and depth of the computation - though no specific information

regarding Alice’s computation is revealed.

• Computation: Alice and Bob interact using two-way classical communication: Alice is able

to drive the computation, by giving Bob single-qubit measurement instructions based on

previous measurement outcomes communicated by Bob to Alice.

In terms of how the properties of BQC are enforced, Fitzsimons (2017) states that, "encryption

can be used to hide communication between the client and the server from eavesdroppers,

while authentication codes can be used to detect any attempt to modify these messages".

The most desirable setting for BQC application would be, "a verifiable BQC protocol which

could be performed between a client without any quantum capabilities and a single quantum

server" Fitzsimons (2017). Potential future implementations of BQC would be to use satellite

quantum communication methods in order to, "send quantum states from a satellite to ground

servers" (Pirandola et al., 2019).

6.2 Quantum Homomorphic Encryption (QHE)

Yu (2018) and colleagues (Yu, Perez-Delgado and Fitzsimons, 2014) describe (classical) ho-

momorphic encryption (HE) as an encryption scheme that allows computation to be performed

on data encrypted in such a way that certain operations can be performed on that data with-

out decryption. This allows the potential for a user to provide encrypted data to a remote

server for processing without having to reveal the plaintext. An HE scheme can be said to

be ’fully homomorphic’ if it allows for any arbitrary amount of quantum computation to be

performed (Ouyang, Tan and Fitzsimons, 2018). An HE scheme that supports quantum com-

putation is a quantum homomorphic encryption (QHE) scheme, and a QHE scheme which is

fully-homomorphic is a quantum fully homomorphic encryption (QFHE) scheme (Alagic et al.,

2017).

QHE involves performing quantum computation on a party’s private (encrypted) data with the
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program provided by another party, without either party revealing much information (about

the data nor the program) to the opposing party (Yu, 2018). QHE gives the certainty that

the final computation result is correct, and that the data and the final computation result are

known only to the data-provider who, "learns little about the circuit performed beyond what

can be deduced from the result of the computation itself" (Yu, 2018).

Though BQC and QHE have the same goal of carrying out a computation on encrypted data

(Mahadev, 2018), QHE differs from BQC in that, with QHE, "the party with the program

does not know the output" (Yu, 2018). Wherein BQC, "the computation to be performed

forms part of the secret, QHE schemes do not have secret circuit evaluations" (Ouyang, Tan

and Fitzsimons, 2018) meaning they serve only to obscure the information that is intended

for processing. Also, where BQC allows multiple rounds of interaction between the client and

server, QHE allows only one round of interaction (Mahadev, 2018).

Ouyang, Tan and Fitzsimons (2018), Yu, Perez-Delgado and Fitzsimons (2014) and Tan

et al. (2016) describe how HE and QHE schemes comprise four components: key generation,

encryption, evaluation, and decryption.

• Key Generation: conducted by a key generation protocol, producing a quantum state used

as a key for encryption.

• Encryption: an encryption unitary operator/algorithm encrypts the data (input state) using

the generated encryption key (and potentially making use of some ancilla system). This

process results in a decryption key being produced.

• Decryption: a decryption unitary operator/algorithm decrypts the encrypted state using the

decryption key.

• Evaluation: conducted by a set of evaluation unitary operators/an evaluation algorithm,

used to process the data without decryption such that, "after decrypting the output the net

effect is equivalent to applying a quantum circuit directly to the initial input state" (Yu,

Perez-Delgado and Fitzsimons, 2014).

QFHE discussed by Ouyang, Tan and Fitzsimons (2018) satisfies two properties: correctness

and compactness. Correctness occurs when, "the evaluated output on the cipher-state after

decryption is equivalent to the output of the direct evaluation on the quantum plaintext"

(Ouyang, Tan and Fitzsimons, 2018). Compactness of a scheme is when the complexity of a

decryption algorithm, "does not depend on the computation to be evaluated and scales only

polynomially in the size of the plaintext" (Ouyang, Tan and Fitzsimons, 2018). This implies

that a decryption algorithm used in QFHE schemes cannot in any way depend on the evaluated
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computation.

QHE has hit a barrier in recent studies with (Yu, Perez-Delgado and Fitzsimons, 2014) revealing

that QHE is not able to achieve "perfect information theoretic security" (Tan et al., 2016)

while enabling arbitrary processing of encrypted data, unless the size of the encoding grows

exponentially.
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Chapter 7

Quantum Random Number Generators

(QRNGs)

Random numbers are essential in cryptographic practices and protocols, used in: nonces (num-

bers that must be used only once), initialisation vectors, sequence numbers (the starting num-

ber in a sequence), digital signatures, interactive protocols, and salts (a random sequence

that is hashed together with a password) to avoid dictionary attacks in hashed password lists

(Herrero-Collantes and Garcia-Escartin, 2017). Herrero-Collantes and Garcia-Escartin (2017)

mention two kinds of generating number with random number generators (RNGs); "algo-

rithmically generated numbers that mimic the statistics of random distributions and random

numbers generated from unpredictable physical events".

Devices which use the former method are known as pseudo-random number generators (PRNGs),

they are intend for “random enough number generation, even if it produces a predictable

sequence” (Herrero-Collantes and Garcia-Escartin, 2017) and thus cannot be consider truly

random number generation.

Devices which use the latter method of number generation are known as true random number

generators (TRNGs), used heavily in applications that require outputs that are not so easily

guessed by using a physical process which is, "unpredictable or, at least, difficult to predict"

(Herrero-Collantes and Garcia-Escartin, 2017). Ma et al. (2016) suggest that generation of

true randomness is generally considered impossible by classical means.

Quantum cryptography also needs a reliable source of randomness and QRNGs could be the an-

swer. QRNGs can, "significantly improve the security of cryptographic protocols by ensuring

that generated keys cannot be predicted" (Sanguinetti et al., 2014) as QRNGs use quan-

tum mechanical effects to produce random numbers - they are a particular type of TRNGs

(Herrero-Collantes and Garcia-Escartin, 2017; Ma et al., 2016). Ma et al. (2016) state how,

"true randomness can only be obtained via processes involving inherent randomness", and

due to the randomness at the core of quantum mechanics, it makes a perfect source of en-

tropy with the potential of "true randomness" while achieving fast generation rates - even
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on untrusted hardware using device-independent generation protocols (Herrero-Collantes and

Garcia-Escartin, 2017).

Ma et al. (2016) mention how true randomness can be achieved from the measurement of

a quantum system (for example, measuring a single qubit). Herrero-Collantes and Garcia-

Escartin (2017) indicate that there are various methods used in QRNGs: radioactive decay,

electronic noise and analyses, measuring the quantum states of light photons to gather entropy

from a quantum origin, non-optical quantum phenomena, and those whose randomness is

primarily backed by quantum mechanics. QRNGs are, "faster than alternative TRNGs, produce

random numbers of good quality and suppose small deviations from the usual configuration

of the equipment" (Herrero-Collantes and Garcia-Escartin, 2017) such that most QRNGs can

be built with the same technology and at a relatively low cost (Ma et al., 2016).

(Ma et al., 2016) define three categorises for QRNGs depending on a devices’ degree of

trustworthiness: trusted device, self-testing and semi-self-testing.

• Trusted device (practical) quantum random number generation, relies on fully trusted and

calibrated devices, generating randomness at a high speed by properly modelling the devices.

• Self-testing quantum random number generation, relies on verifiable randomness can be

generated without trusting the actual implementation.

• Semi-self-testing quantum random number generation, is an intermediate category, providing

a trade-off between the trustworthiness on the device and random number generation speed.

QRNGs are already available as commercial products and online servers, providing quantum

random number generation on demand (Herrero-Collantes and Garcia-Escartin, 2017), as up

until now, "the cost, size, and power requirements of current QRNGs have prevented them

from becoming widespread" (Sanguinetti et al., 2014). Although proposals such as the one

made by Sanguinetti et al. (2014) for integrating random number generation into smartphones,

using ever-improving camera technology to measure, "light at the few-photon level", would

help make the widespread use of quantum random numbers possible.

7.1 QRNGs for QKD

QKD offers a way to generate two secure keys at distant locations, though its security relies on a

vast quantity of random numbers (Sanguinetti et al., 2014). Stipcevic (2011) mentions how the

BB84 (QKD) protocol would be, "completely insecure if only an eavesdropper could calculate

(or predict) either Alice’s random numbers or Bob’s random numbers or both", meaning RNGs
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used by BB84 should be TRNGs. Herrero-Collantes and Garcia-Escartin (2017) describes QKD

as a, "sophisticated distributed secure random number generator", which includes a physical

method to generate entropy and a randomness amplification algorithm (see section 4.5). QKD

protocols assume they have access to true randomness, making QRNGs most beneficial for

QKD.

Without a means of true randomness for deciding the measurement bases and the states used

in the QKD process, practical QKD protocols such as BB84 protocol could be vulnerable to

attacks/hacks due to imperfect state preparation and measurement (Herrero-Collantes and

Garcia-Escartin, 2017; Xavier et al., 2009; Li et al., 2015). So long as both sender and

receiver (Alice and Bob) involved in a QKD process use a hardware-based true QRNG, the

QKD process will benefit from, "truly random and independent choices" instead of relying on

(classical) software RNGs which generate pseudo-random sequences (Xavier et al., 2009).
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Chapter 8

Perfect Secrecy Cryptography

The future could see classical alternatives to quantum cryptography coming to light, as even

though quantum cryptography is unclonable, it requires quantum installations that are more

expensive, slower, and less scalable than classical optical networks (Di Falco et al., 2019).

A simple yet effective private key cryptosystem is the Vernam cipher, also known as a one time

pad (OTP) (Nielsen and Chuang, 2011), is an example of perfect forward secrecy cryptography;

also known as perfect secrecy cryptography (Ornes, 2017). OTP involves encoding a message

via a bitwise XOR operation with a random key (string of bits); it is secure only as long as,

"the number of key bits is at least as large as the size of the message being encoded" (Nielsen

and Chuang, 2011). By never reusing the random key in whole or in part, it reduces the threat

of attack through cryptanalysis techniques (Ornes, 2017). As long as the random key used for

OTP remains secret, it said to be "provably secure" (Nielsen and Chuang, 2011). Even though

OTP is sophisticated enough to divulge no information other than the maximum length of the

message, it has not seen wide adoption due to lack of a practical and secure way for users to

exchange the key (Ornes, 2017).

Di Falco et al. (2019) have recently introduced a means of perfect secrecy cryptography

intended for classical optical channels (see figure 8.1). The system they propose exploits

correlated (chaotic) wave-packets, mixed in inexpensive (CMOS-compatible) silicon chips,

with each chip generating, "0.1 Tbit of different keys for every mm of length of the input

channel, and require the transmission of an amount of data that can be as small as 1/1000

of the message’s length" (Di Falco et al., 2019).

Though the security of this proposed system is not of a quantum nature, the security is enforced

by, "the second law of thermodynamics and the exponential sensitivity of chaos" such that

the process is near irreversible/impossible to replicate, as a result it prevents attackers from

getting any information on the exchanged key (Di Falco et al., 2019).

There are upward scalablity issues with current quantum networks technologies for global scale.

Data transfer speed exhibited on prototype quantum networks are considerably slower than
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Figure 8.1: The Di Falco et al. (2019) protocol scheme for perfect secrecy key generation on classical channels. (Step a)
Communication setup on a classical public channel with the users (Alice and Bob) and attacker (Eve). (Step b) Communication
and key generation steps: Alice and Bob launch broadband pulses from their sides and transmit different chaotic states (An and
Bn′ ), always measuring correlated mixed chaotic states when Eve does not actively interfere on the channel with additional
states Ex. At the end of the transmission, Alice and Bob generate new keys. (Step c) Encryption and decryption scheme via

bitwise XOR between the text and the generated key.

classical optical communications (Ornes, 2017). Advantages of this scheme by Di Falco et al.

(2019) include: the compatibility to make use of existing optical fibre networks and network

technologies, while providing a classical means of perfect forward secrecy.

The system works by exploiting the property of ’chaos’ to generate, "time varying signals

that are mathematically unpredictable" in order to support a, "bidirectional communication

channel for securely exchanging random keys of arbitrary length" (Di Falco et al., 2019). If

two users (Alice and Bob) each possess a proposed chip, they can generate chaotic light states

from the, "chaotic scattering of broadband pulses with different frequencies and diverse input

conditions" such that each light state is, "a random superposition of optical waves at different

frequencies" for transmission over a public (classical) optical channel (Di Falco et al., 2019).

Di Falco et al. (2019) assure that the system/protocol is fully compatible with existing sup-

porting techniques for QKD, such as privacy amplification and information reconciliation (see

section 4.5). It only requires initial communication when authenticating the users; thus this

system can be seen as a classical alternative to QKD. Another decisive pro for the adoption

of this protocol by Di Falco et al. (2019) is that it does not require, "electronic databases,

private keys, or confidential communications", such that when combined with existing network

capabilities on a globalised scale, to keep costs down, perfect secrecy cryptography will be still

achievable.
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Chapter 9

Conclusion

In conclusion, quantum computing is on the horizon and it is clear that a lot of cryptographic

schemes and protocols in use today are vulnerable. Post-quantum cryptography is only a short-

term solution in preventing a global catastrophe, which could result if there is not sufficient

investment in the development of cryptographic standards capable of withstanding quantum

attacks. A long-term and costly option, though likely more prevalent and future-proof, is

quantum cryptography.

As previously discussed quantum cryptography has many fields of study. The possible imple-

mentation of QKD and other quantum cryptographic schemes (such as quantum coin flipping)

on global scale quantum networks will only be feasible for large companies and institutes with

the financial means to fund such projects. Though thanks to delegated quantum computing

techniques, owners of this new quantum network hardware could provide cloud-based solu-

tions for everyone to be able to harness quantum computation through both BQC and QHE

methods.

QRNGs will likely see their usefulness increase, for providing a form of true randomness,

especially since hardware for such devices are low cost and can feasibly start to be integrated

into handheld devices such as smartphones for day-to-day usage. The concept of quantum

money, though currently hypothetical, could also be the answer to a future alternative for

(classical) block chain methods.

There also exist new concepts of classical cryptography which could match the level of se-

curity found from existing quantum cryptographic schemes. One potential scheme, heralded

a classical BB84 protocol, implements a OTP type scheme by exploiting correlated (chaotic)

wave-packets, mixed in inexpensive (CMOS-compatible) silicon chips. This has the potential

for implementation in personal computers and laptops at a fraction of the cost of quantum

cryptographic hardware, making perfect forward secrecy accessible for everyone.

This project has surveyed and summarised the field of quantum cryptography and other similar

theories; with the intention to make readers of this paper aware of both old and existing
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discussions. This will hopefully encourage more people to take an early interest in the future

of cryptography when considering the very real concern of quantum computation.

For anyone with an interest in the future of cryptographic standards and technologies, who

would perhaps like to know more than that which is presented in this entry-level survey paper,

the topics outlined in chapters 4, 5, 6, 7 and 8 can be further explored. There needs to be

a proactive response to the potential of quantum computing, rather than ‘reactive’. With

the goal being to make the world’s security more stable and assured during a time of great

innovation for quantum computing.
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